Search Results for

    Show / Hide Table of Contents

    Clock Spin Glass

    The clock model (and corresponding clock spin glass) describes interacting spins which can take discrete values on the 2D planar unit circle.

    \mathcal{H} = -\sum_{ij} J_{ij}\, s_i\!\cdot\!s_j,\quad s_i=(\cos\varphi_i, \sin\varphi_i)
    

    where \(`s_i\!\cdot\!s_j`\) is a scalar product and each \(`\varphi_i`\) can take one of \(`q`\) values:

    \varphi_i = v_i \frac{2\pi}{q},\quad v_i\in\{0,\ldots,q-1\}
    

    Or, as a visual representation for \(`q=5`\):

    \begin{tikzpicture} \draw (0,0) circle(2); \draw[->,line width=1.5pt] (0,0) -- (30:2); \draw[->,line width=1.5pt] (0,0) -- (102:2); \draw[->,line width=1.5pt] (0,0) -- (174:2); \draw[->,line width=1.5pt] (0,0) -- (246:2); \draw[->,line width=1.5pt] (0,0) -- (318:2); \end{tikzpicture}

    NOTE: For the case discretized to two values, \(`q=2`\), this model corresponds to the Ising spin glass.

    Hypergraph Generalization

    The scalar product in the standard clock Hamiltonian does not lend itself to a generalization for multi-spin interactions. Instead, the qiotoolkit implementation uses a Hamiltonian based on the normalized sum of vectors \(`\vec v_e`\):

    \mathcal{H} = -\sum_e J_e (2v_e^2-1),\quad
    \vec v_e = \frac{1}{|e|}\sum_{i\in e} \vec{s_i}\,
    

    where the term in brackets reduces to the scalar product for the case of 2-spin interactions and covers the range \(`[-1,1]`\) for any \(`q`\):

    • The minimal value is realized when the clock spins "cancel out" (i.e., sum up to \(`\vec 0`\))
    • The maximal value is realized when all spins are aligned (have the same value).

    Example Input Data

    {
      "type": "clock",
      "version": "0.1",
      "q": 5,
      "terms": [
        {"c": 1.0, "ids": [0, 1]},
        {"c": 1.0, "ids": [1, 2]},
        {"c": 1.0, "ids": [2, 3]},
        {"c": -2.0, "ids": [3, 0]}
      ]
    }
    
    In This Article
    Back to top Generated with Doxygen and DocFX