Search Results for

    Show / Hide Table of Contents

    Substochastic Monte Carlo

    Simulates a population of random walkers with birth-death resampling. qiotoolkit's implementation allows both the stepping probability alpha and the resampling factor beta to be specified as a schedule (over simulation steps).

    Additionaly, you may specify the target_population and the number of steps_per_walker as input parametes.

    Example

    {
      "target": "substochastic-monte-carlo.qiotoolkit",
      "version": "1.0",
      "input_params": {
        "seed": 42,
        "alpha": {
          "initial_value": 0.8,
          "final_value": 0.2,
          "count": 1e3
        }
        "beta": {
          "initial_value": 0.2,
          "final_value": 0.8,
          "count": 1e3
        }
        "target_population": 800
      },
      "model": {...}
    }
    

    This simulates a population of 800 random walkers over the course of 200 steps. It starts out with an emphasis on stepping (alpha=0.8) and gradually changes to a resampling regime.

    Note

    Substochastic Monte-Carlo does currently NOT adjust the energy scale of your model. Therefore the magnitude of beta may need to be adjusted for your needs.

    Parameters Specification

    • List
    • Schema
    param type required/default description
    seed integer default: time-based
    target_population integer required The desired population size (throughout the simulation).
    alpha Schedule required How the stepping probability alpha should be changed over time.
    beta Schedule required How the resampling factor beta should be changed over time.
    steps_per_walker float >0 Number of steps to attempt for each walker.
    {
      "$id": "solver/substochasticmontecarlo.qiotoolkit.schema",
      "$schema": "http://json-schema.org/draft-07/schema#",
      "title": "qiotoolkit Substochastic Monte Carlo",
      "type": "object",
      "required": ["target", "input_params"],
      "properties": {
        "target": {
          "type": "string",
          "const": "substochasticmontecarlo.qiotoolkit"
        },
        "input_params": {
          "type": "object",
          "required": ["target_population", "alpha", "beta"],
          "properties": {
            "target_population": {
              "type": "number",
              "minimum": 0,
              "multipleOf": 1
              "description": "The desired population size (throughout the simulation)."
            },
            "alpha": {
              "$ref": "../schedule/schedule.schema",
              "description": "How the stepping probability `alpha` should be changed over time."
            },
            "beta": {
              "$ref": "../schedule/schedule.schema",
              "description": "How the resampling factor `beta` should be changed over time."
            },
            "steps_per_walker" {
              "type": "integer",
              "description": "Number of steps to attempt for each walker.",
              "minimum": 1
            }
          }
        }
      }
    }
    
    In This Article
    Back to top Generated with Doxygen and DocFX