Search Results for

    Show / Hide Table of Contents

    Class markov::Metropolis

    Metropolis Algorithm.

    Random sampling approximating the Boltzmann distribution using a Markov chain Monte Carlo approach.

    Inheritance
    markov::Walker
    markov::Metropolis
    Inherited Members
    get_lowest_state
    check_lowest
    state
    reset_evaluation_counter
    make_sweep
    swap_state
    make_sweep
    set_model
    model
    Walker
    make_sweeps
    make_sweep
    attempt_transition
    get_evaluation_counter
    set_rng
    save_lowest
    rng
    apply_transition
    init
    get_lowest_cost
    make_step
    cost
    init
    apply_scale_factor
    compare
    attempt_transition
    apply_transition
    verify_cost_difference
    configure
    render
    ~Component
    Component
    get_status
    param
    get_class_name

    Constructors

    Metropolis()

    Create a Metropolis instance with uninitialized model and state.

    Declaration
    markov::Metropolis<Model>::Metropolis()

    Methods

    temperature()

    Get the current temperature for sampling.

    Declaration
    double markov::Metropolis<Model>::temperature() const

    beta()

    Get the current inverse sampling temperature.

    Declaration
    double markov::Metropolis<Model>::beta() const

    set_temperature()

    Set the sampling temperature (also updates beta_).

    Declaration
    void markov::Metropolis<Model>::set_temperature(double temperature)

    set_beta()

    Declaration
    void markov::Metropolis<Model>::set_beta(double beta)

    accept()

    Decide whether to accept a given cost increase.

    Declaration
    bool markov::Metropolis<Model>::accept(const typename Model::Cost_T&cost_diff) override

    memory_estimate()

    Estimate memory consumption using model parameters.

    Declaration
    static size_t markov::Metropolis<Model>::memory_estimate(const Model&model)
    In This Article
    Back to top Generated with Doxygen and DocFX