Class strategy::BayesianOpt
Bayesian Global Optimization stategy searching implementation. The BayesianOpt is a wrapper class for GPP library https://github.com/wujian16/Cornell-MOE The paper "A Tutorial on Bayesian Optimization" is a good introduction of bayesian optimization.
Inherited Members
Constructors
BayesianOpt()
Declaration
strategy::BayesianOpt::BayesianOpt()
BayesianOpt()
Declaration
strategy::BayesianOpt::BayesianOpt(const BayesianOpt&)=delete
Methods
operator=()
Declaration
BayesianOpt&strategy::BayesianOpt::operator=(const BayesianOpt&)=delete
configure()
Declaration
void strategy::BayesianOpt::configure(const utils::Json¶ms, int thread_count)
init()
Declaration
void strategy::BayesianOpt::init(size_t dimensions, uint32_t seed, size_t reserved_samples=128)
init()
Declaration
void strategy::BayesianOpt::init(size_t dimensions, uint32_t seed, const GDParameters&model_parameters, const GDParameters&search_parameters, size_t reserved_samples=128)
recommend_parameter_values()
Declaration
bool strategy::BayesianOpt::recommend_parameter_values(std::vector<double>¶meters_new) override
add_new_sample()
Declaration
void strategy::BayesianOpt::add_new_sample(std::vector<double>¶meters, double objective) override
set_ranges()
Declaration
void strategy::BayesianOpt::set_ranges(const std::vector<std::pair<double, double>>&ranges)
num_of_saved_samples()
Declaration
size_t strategy::BayesianOpt::num_of_saved_samples() const
get_sample()
Declaration
double strategy::BayesianOpt::get_sample(int indx, std::vector<double>&sample_point) const
get_reserved_samples()
Declaration
uint32_t strategy::BayesianOpt::get_reserved_samples()
copyout_winner()
Declaration
void strategy::BayesianOpt::copyout_winner(std::vector<double>¶meters) const
log_hyper_parameters()
Declaration
void strategy::BayesianOpt::log_hyper_parameters() const