Search Results for

    Show / Hide Table of Contents

    Class strategy::BayesianOpt

    Bayesian Global Optimization stategy searching implementation. The BayesianOpt is a wrapper class for GPP library https://github.com/wujian16/Cornell-MOE The paper "A Tutorial on Bayesian Optimization" is a good introduction of bayesian optimization.

    Inheritance
    strategy::BaseOpt
    strategy::BayesianOpt
    Inherited Members
    BaseOpt
    operator=
    BaseOpt
    get_perf_metrics
    log_parameters
    configure
    render
    ~Component
    Component
    get_status
    param
    get_class_name

    Constructors

    BayesianOpt()

    Declaration
    strategy::BayesianOpt::BayesianOpt()

    BayesianOpt()

    Declaration
    strategy::BayesianOpt::BayesianOpt(const BayesianOpt&)=delete

    Methods

    operator=()

    Declaration
    BayesianOpt&strategy::BayesianOpt::operator=(const BayesianOpt&)=delete

    configure()

    Declaration
    void strategy::BayesianOpt::configure(const utils::Json&params, int thread_count)

    init()

    Declaration
    void strategy::BayesianOpt::init(size_t dimensions, uint32_t seed, size_t reserved_samples=128)

    init()

    Declaration
    void strategy::BayesianOpt::init(size_t dimensions, uint32_t seed, const GDParameters&model_parameters, const GDParameters&search_parameters, size_t reserved_samples=128)

    recommend_parameter_values()

    Declaration
    bool strategy::BayesianOpt::recommend_parameter_values(std::vector<double>&parameters_new) override

    add_new_sample()

    Declaration
    void strategy::BayesianOpt::add_new_sample(std::vector<double>&parameters, double objective) override

    set_ranges()

    Declaration
    void strategy::BayesianOpt::set_ranges(const std::vector<std::pair<double, double>>&ranges)

    num_of_saved_samples()

    Declaration
    size_t strategy::BayesianOpt::num_of_saved_samples() const

    get_sample()

    Declaration
    double strategy::BayesianOpt::get_sample(int indx, std::vector<double>&sample_point) const

    get_reserved_samples()

    Declaration
    uint32_t strategy::BayesianOpt::get_reserved_samples()

    copyout_winner()

    Declaration
    void strategy::BayesianOpt::copyout_winner(std::vector<double>&parameters) const

    log_hyper_parameters()

    Declaration
    void strategy::BayesianOpt::log_hyper_parameters() const
    In This Article
    Back to top Generated with Doxygen and DocFX